
Why Performance
and Costs
Are Taking Up
Developers’
Attention

eBook

2

With the adoption of cloud technologies,
it has become easier than ever to set up
a cluster of servers that can handle user
traffic in minutes. Virtually every company
is moving or has moved to the cloud, as it
eliminates the hassles of buying, installing,
and managing servers on-premises. One can
confidently say that the move to the cloud
has empowered smaller companies such as
startups to deploy their apps on the internet,
making them easily accessible and able to
compete.

The ability of startups to turn into unicorns
is partly dependent on cloud technologies,
as not having to host their own servers on-
premises has made it far easier for them to
survive and scale. Still, despite the belief that
the cloud can bring down your costs, it's not
exactly that straightforward. There are many
financial components to consider, as well as
hidden cost barriers that are not obvious up

front—and because cloud technologies are
mostly designed for engineers, calculating
these costs is not so simple either.

The attention paid to cloud cost specifics is
also a barrier. Developers are only working
toward getting the job done, and for this,
we usually spin up hundreds of servers
whenever required for development and
testing purposes. It’s not a guarantee that we
spin down these resources, and thereby tie
up loose ends when work is complete. This
is one reason for the record increase in costs
for cloud infrastructure, and companies are
now focused on evaluating their costs more
closely and on finding various methods to
lower them.

And so we have the rise of FinOps—a
consolidation of finance and IT to better
understand cloud costs, get them under
control, and establish a sustainable budget

for the long run. In this ebook, we’ll see how
optimization can be achieved and also look
at some of the current trends in FinOps.

despite the belief that
the cloud can bring down
your costs, it's not exactly
that straightforward

We all know that DevOps is where
developers and operations come together
to make your cloud (and even on-premises)
infrastructure happen. Today, with the
increase in cloud adoption, keeping a check
on the costs involved is very important.
This has given rise to a new collaboration
between the IT, finance, and operations
teams called FinOps, also known as CostOps.

FinOps seeks to get a grasp on an
organization’s current cloud infrastructure
so that your finance team can properly
forecast costs going forward. This will in turn
help create a sustainable budget and avoid
surprises in future cloud bills.

From a technical perspective, FinOps
enables IT teams to see how and where
unwanted costs are being incurred, for
example, via the overprovisioning of a
cluster, wasted resources, or test machines
that are no longer being used. These are all

real-world situations that lead to unexpected
cloud infrastructure costs.

This purpose and cost-consciousness will
trickle down to developers, helping them
to write better, more efficient code. For
example, they can make sure to use all
the processing power available (multi-core
or multi-thread applications) and reduce
memory usage, which will also have a direct
impact on cloud costs since you can use
smaller machines or spin up virtual machines
with fewer resources.

FinOps.org defines a three-stage operating
model as a template for teams to start
thinking about and applying FinOps. The
template touches on the usage of cloud
infrastructure, helps optimize that usage, and
then defines operations for businesses to
achieve a higher ROI and for developers to
better utilize the infrastructure available.

FinOps:
What It’s All
About

3

https://aws.amazon.com/devops/what-is-devops/
https://www.finops.org/projects/adopting-finops/

4

Stage 1:
Gather Information

In the first phase, each team lists and defines
their usage of cloud infrastructure. This
gives visibility and accountability to teams
and helps the business understand how and
where cloud expenditure is coming from. With
this “map”, you can create a budgeting model
for must-have infrastructure to help bring
down costs and leverage the custom pricing
models offered by most cloud infrastructure
providers. Each team will also align their
cloud usage with the budget allocated, as
well as set up a process to track and provide
visibility into their usage and costs incurred.
This can be visualized as reports that are
regularly generated and shared across your
engineering, finance, and product teams.

Stage 2:
Performance Optimization

In the second phase, you analyze the
information collected to identify underutilized
resources, services that could benefit from
reservation planning, and other small steps
towards big results. Once these items are
identified, it will be easier to fix or tune
performance to better use the available
resources and not allocate more than what
is required. Another outcome expected from
the performance optimization phase is that
FinOps teams will identify services that can
utilize committed use discounts to bring down
cloud costs significantly.

This process should be centralized so that all
buying decisions are made by one team (not
various teams in silos), ensuring the proper
use of offers and services, such as discounts,
reserved instances, and shared volumes—
achieving significant savings in cloud spend.

Stage 3:
Defining Operations

Once you've identified all the places where
cloud usage can be optimized to bring down
costs, the next step is to define the operations
and processes required to periodically
follow these optimization techniques across
the organization—from the finance teams,
developers, and IT teams all the way up to
the management level. There has to be a
refined balance of cloud resources that can
promote resource-sharing across teams
(while still keeping security at the center of
everything). That includes granular allocation
of resources to teams based on documented
resource-utilization plans and the automation
and streamlining of these processes to avoid
friction, save time, and improve accuracy.
Also, it becomes each team's responsibility
to stick to the budget—or provide compelling
reasons within a set procedure for requesting
an increase.

Three-stage FinOps launching model

1 2 3

Why
Developers
Should Care
About Costs

Developers usually don't worry about the
costs of the resources they are using. There
are multiple reasons for this; for instance,
billing information is not very obviously
displayed in any of the cloud infrastructure
provider dashboards. Also, developers are
not usually responsible for monitoring or
managing the costs of the resources they
work on.

Look at any provider's website—they always
promise that you'll only pay for what you
use. That sounds like a fair deal. But the fine
print missing here is that any resources that
are kept turned on while not being actively
used also incur costs, and this can be a
common occurrence. A lot of server power
is at a cloud admin’s fingertips, and the
ease of clicking around a provider’s UI and
spinning up a test cluster can be a curse: It’s
so easy that one might not assign it much
significance and forget to spin it down later,
racking up cluster costs all the way.

According to an article on DevOps.com,
organizations are wasting some 44% of their
cloud spend on non-production resources
that typically lay idle 76% of the time, and
40% on overprovisioned resources, totaling
$11 billion and $6.6 billion, respectively, of
cloud waste in 2020.

That's a lot of money that can be easily
saved. And this is where developers can
make a difference.

But first, organizations must make the
cloud infrastructure expenditure visible
to developers to give them a sense of
ownership. They need to let developers
choose the resources they want to use but
also be aware of the expenses associated
with those resources, as keeping developers
blind to these cloud costs will only increase
them.

5

https://devops.com/the-cloud-is-booming-but-so-is-cloud-waste/?utm_source=thenewstack&utm_medium=website&utm_campaign=platform
https://devops.com/the-cloud-is-booming-but-so-is-cloud-waste/?utm_source=thenewstack&utm_medium=website&utm_campaign=platform

6

Performance Optimization for
Cutting Costs
This might sound crazy if you are not a
developer, but yes, bad code will increase
your operating costs because it can require
more resources to function as expected. For
example, if you're working on an application
that can utilize multi-threading, you should
write code to do just that. With a single
thread, you'll need resources for longer,
which will directly affect the cost. Similarly,
if your code is not optimized to efficiently
use memory, you will have to allocate bigger
machines or VMs to your applications, which
will also directly affect the cost.

There is a misconception that if your
application is using more CPU, it's doing
something wrong. On the contrary, if
resources are being utilized to their fullest

extent, it typically reduces costs. The only
exceptions to this are if your application is
using more CPU to perform decidedly simple
operations, or if you have overallocated
resources. In both cases, actions need to
be taken to fix the issue and eliminate the
associated cloud waste.

Profile Your Resource Usage
Resource monitoring in production
environments is a must to understand how
your code is performing in the real world, as
well as to detect and predict any bottlenecks
in the data flow. Knowing about such issues
early on will give you time to handle them
properly and avoid downtime.

Most resource monitoring tools not only
show you the number of resources being
used versus availability, but also integrate

into your code for you to see how it is
performing with the allocated resources.
They additionally capture exceptions and
stack traces that allow you to debug easily
with more information than usual.

There are many such tools available on the
market, including gProfiler, an open-source
solution that combines a variety of profilers
to give you a unified report of what your
CPU is working on. An always-on profiler
makes sure no information is lost, and
operating overhead is minuscule at just 0.1%
of CPU, 20 MB of RAM usage, and 20 KB/s
of network. And with gProfiler’s cloud-based
interface, you can check on your production
infrastructure from anywhere at any time; it
is completely free and open-source, doesn't
require any code changes, and can be easily
deployed alongside your already-deployed
code.

https://thesai.org/Downloads/Volume3No6/Paper 16-A Survey on Resource Allocation Strategies in Cloud Computing.pdf
https://thesai.org/Downloads/Volume3No6/Paper 16-A Survey on Resource Allocation Strategies in Cloud Computing.pdf
https://docs.granulate.io/granulate-the-basics/the-gprofiler

New trends in the industry today are moving
developers from their world of code to
getting more involved in DevOps and FinOps
functionalities. We have already discussed
FinOps itself and how it helps keep cloud
usage in check; below, we discuss some
additional trends surrounding FinOps.

Code Must Now Be Efficient
As FinOps adoption increases, developers
have started focusing on performance
optimization and writing more efficient code
to make sure that their apps are not using
more resources than required. At the same
time, wherever possible, developers are also
writing code to utilize multiple cores of the
allocated processor, as discussed in previous
sections.

This is evident from the increase in the
number of courses available online on how
to write efficient code using better data

structures and algorithms, a topic that now
pops up continuously in interviews with
industry players as well. We have also seen
an increase in code review practices across
the industry to make sure inefficient code is
not shipped to production at all.

Cloud Costs Become a Priority
This trend is also tightly coupled with the
rise in the adoption of FinOps. Now that each
team must take responsibility for adhering to
cloud expenditure budgets, developers have
to make sure they are not going overboard
with costs. This in turn also ensures that the
code being written is very efficient.

Any increase in the cloud expenditure of a
team or the resources allocated to it is taken
seriously these days and generally involves
justifying the increase to a team of decision
makers.

Shifting
Trends in the
Industry

7

8

The Shift Left
In a traditional waterfall software
development process, the different
stages of a software lifecycle happen
sequentially. For example, developers first
gather requirements, then analyze those
requirements, and then proceed with design,
followed by coding, and finally testing. As
you might have already learned, this is not
the most efficient or effective model for
development nowadays.

If you imagine these various stages of the
waterfall model laid out, we move from left
to right as each stage is completed. But in
today's agile methodology, this left-to-right
movement is very slow and can prove to
be very expensive too because we're only
evaluating our design and code at the very
end. This means that if something goes
wrong, a lot of rework will be required.

To avoid this, we now start testing very early
on in the process. We question everything
right from the design phase to make sure
we tackle a problem as soon as it arises to
ensure our design is bulletproof. Next, when
we start the coding process, we deploy
and test small chunks of code individually
to make sure any rework is minimal and any
error or issue is identified and fixed very
early in the process. This reduces both time
spent and cloud costs.

So now, the left-to-right movement is much
faster and agile, with testing shifted to the
left to pretty much every stage of the life
cycle. This new approach is called Shift Left.

Mixed responsibility is
required to make sure
things move quickly and
without any problems

https://devopedia.org/shift-left
https://devopedia.org/shift-left

9

Mixed Development Teams
A few years back, it was commonplace to
see separate teams for developers, quality
engineers, IT, operations, finance, and other
responsibilities within an organization. But
that's not the case anymore. Today, we
see mixed-responsibility teams—teams
with developers, designers, SREs, quality
engineers, DevOps, and now even FinOps.

This mixed responsibility is required to make
sure things move quickly and without any
problems. Having someone from FinOps
on the team ensures that the team is well
aware of the allocated budget, while having
a DevOps engineer on the team will make
sure that we are not underutilizing any
resources. This helps promote performance
optimization, reduce cloud costs, and
thereby help the team stay within the
budget.

Plus, since any issues that arise in any of
these fields are taken care of within the
team itself, dependency on other teams is
reduced, helping to achieve deadlines, which
also reduces costs.

Development Blends Into DevOps
DevOps as a dedicated practice is quickly
becoming extinct, as developers have
started realizing what DevOps is and how
they can accomplish it themselves. This can
mostly be credited to the fact that most
DevOps tools and services now support
spinning up and spinning down entire
clusters of services with only configuration
files, which developers already know how
to work with. Developers also know and
understand what resources they need for
their apps and services.

In most organizations, even if developers are
not given the responsibility of operations,
they are expected to shadow DevOps
engineers and understand how it works.
There are multiple reasons for this. For
instance, it forces developers to gain
context, and to see how their demand for
resources directly converts to actual money
spent. It can also introduce redundancy in
teams.

The line between developers
and DevOps is quickly blurring,
a trend that is quite strong in
the industry and one that many
argue is for the best

10

There are organizations where all quality
assurance engineers have been converted
to being developers, and all developers are
now expected to do both the development
and testing of their peers’ code. Such
amalgamation of responsibility leads to an
awareness of the different practices of each
team.

Infrastructure Increasingly in
Devs’ Hands
There is a reason why we’re seeing high
demand for developers who have worked
at startups: They’re a lot more than just
developers. Startups, and even older but
smaller organizations, don't usually have the
budget for various teams to manage their
tech stack or infrastructure. This leads to the
developers having to wear multiple hats on
any given day, meaning they’re in charge of
the infrastructure they use.

This is a sound practice. Because from the
very beginning of the organization, the
developers understand how cloud billing
works and how their apps are affecting
costs, which in turn makes them learn how to
optimize their code for cost.

There are various other reasons for this
practice. As already mentioned, the line
between developers and DevOps is quickly
blurring, a trend that is quite strong in the
industry and one that many argue is for the
best.

Developers have to
wear multiple hats on
any given day, meaning
they’re in charge of the
infrastructure they use

Cloud computing came along as a way to
reduce costs by offloading the work of
buying, installing, and maintaining servers to
other companies and paying only for what
was used. But there's a cost associated with
the conveniences of the cloud. And in most
cases, that cost is not very obvious. Cloud
infrastructure providers have perfected the
art of making cost calculation very tricky and
involved. And because cloud consoles are
focused more on developers, billing never
plays a prominent role.

As more and more companies are realizing
that cloud costs need to be monitored
and properly budgeted, developers are
increasingly expected to step up their game
by being aware of costs and following
their organization’s FinOps model to lower
cloud waste. Developers must make sure
they write efficient code that performs
as expected and saves resources, which
is where various monitoring tools such
as gProfiler come into play to promote
performance optimization and help reduce
cloud costs wherever possible.

To get both a system-wide view of your
code’s performance and opportunities for its
optimization, try gProfiler for free today.

Summary

11

